negative log-likelihood
A metric for optimizing the log likelihood of a model; by minimizing the negative log likelihood, you maximize the log likelihood (i.e. the most likely set of parameters for a given model that the data originated from).
For target y
, and predicted Gaussian mean mu
and variance var
:
begin
function nll(mu, var, y)
return log(var^2) / 2 + (y - mu)^2 / (2 * var^2) + eps(Float32)
end
function log_likelihood(mu, y)
return -0.5 * log(2 * pi) - sum((y .- mu).^2 ./ 2)
end
Backlinks
scalable-uncertainties-from-deep-ensembles
- The [[negative log-likelihood]] criterion used:
machine-learning-notes
- [[negative log-likelihood]]